в космическом полёте, системы жизнеобеспечения (СЖО), комплекс мероприятий, направленных на обеспечение жизнедеятельности экипажа космического корабля на протяжении полёта. Верхние слои атмосферы Земли и тем более космическое пространство, условия на поверхности планет Солнечной системы непригодны для жизни высокоорганизованных существ, включая человека. Поэтому жизнь и деятельность человека в космическом пространстве может быть обеспечена созданием в космических кораблях, на искусственных спутниках Земли или планетных станциях искусственной среды обитания, близкой к оптимальной области диапазона жизни на Земле, в её биосфере (См.
Биосфера). Это относится как к воздушной среде - искусственной атмосфере корабля, так и к тем элементам среды, в широком смысле слова, которые необходимы для питания и поддержания водного баланса организма человека.
Существование человека основано на непрерывном обмене вещества и энергии с окружающей средой. Создание возможностей для этого является функцией СЖО. Т. о., СЖО - комплекс устройств, агрегатов и запасов веществ, обеспечивающих необходимые условия жизнедеятельности экипажа в течение всего полёта. Частные системы (подсистемы) этого комплекса обеспечивают соответствующие им отдельные стороны жизнедеятельности (обмена веществ) организма: питание, водный обмен, газообмен, теплообмен (терморегулирование), отправление естественных надобностей и т. д. Такова типовая структура СЖО в наиболее часто употребляемом узком значении этого термина. СЖО могут быть коллективными (СЖО космических кораблей и планетных станций) и индивидуальными, например автономные СЖО, применяемые вместе со скафандрами.
В более широком смысле к сфере СЖО иногда относят все остальные устройства и предметы, служащие для обеспечения гигиенических, бытовых, культурных и эстетических потребностей экипажа. Необходимость наиболее полного удовлетворения этих потребностей существенно возрастает с увеличением продолжительности пребывания экипажа в космосе, когда эти стороны деятельности человека могут приобретать значение жизненно важных факторов. Частные СЖО делятся на нерегенеративные, предусматривающие создание бортовых запасов пищи, воды, кислорода, и регенеративные, основанные на регенерации этих веществ из продуктов жизнедеятельности человека или др. обитателей космических кораблей и спутников.
Принципиальная возможность регенерации всех необходимых для жизнедеятельности человека веществ основана на том, что организм выделяет в составе продуктов жизнедеятельности все те химические элементы, которые он получил в виде пищи и воды, а также поглощённый при дыхании кислород. Т. о., практически создаётся замкнутый круговорот необходимых веществ. Регенерация пищевых веществ (из углерода углекислого газа, воды, минеральных элементов мочи и кала) может быть, в принципе, осуществлена при использовании способных к фото- или хемосинтезу автотрофных организмов. Ведутся также поисковые исследования по искусственному синтезу пищевых углеводов из углекислого газа и воды.
При расчётах СЖО исходят из потребности человека в пище, воде и кислороде, а также из количества выводимых продуктов жизнедеятельности, что вместе составляет материальный баланс обмена веществ в организме человека (см. табл. 1). Помимо этого, в СЖО предусматривается запас воды для туалета, количество которой при нерегенеративных системах и кратковременных полётах около 100 г/чел-сут; при длительных полётах это количество увеличивается до 2-2,5 кг/чел-сут. Вода составляет (в зависимости от количества её для туалетных надобностей) 60-80\% от массы запасаемых веществ. Поэтому регенеративные системы водообеспечения делают весовой баланс СЖО ниже, чем СЖО с нерегенеративными системами (пропорционально числу членов экипажа и длительности полёта). Исходя из этого, при расчётах СЖО материальный баланс измеряется в чел-сут.
Табл. 1. - Примерный материальный баланс обмена веществ человека
--------------------------------------------------------------------------------------------------------------------------
| Потребление, | Выделение, |
| г/чел-сут | г/чел-сут |
|------------------------------------------------------------------------------------------------------------------------|
| Пища | 500 | Углекислый газ | 930 |
|------------------------------------------------------------------------------------------------------------------------|
| Кислород | 800 | Водяные пары | 840 |
|------------------------------------------------------------------------------------------------------------------------|
| Воды | 2200 | Моча | 1500 |
|------------------------------------------------------------------------------------------------------------------------|
| | | Кал | 230 |
|------------------------------------------------------------------------------------------------------------------------|
| Итого | 3500 | Итого | 3500 |
--------------------------------------------------------------------------------------------------------------------------
Разнообразием принципиальных подходов и решений отличается система обеспечения кислородом (см. табл. 2). Приведённые в таблице методы регенерации кислорода являются лишь наиболее разработанными и не исчерпывают возможных технологических принципов регенерации. Методика и аппаратура для регенерации кислорода электролизом воды позволяет обеспечить
Газообмен человека с помощью установки, которая весит около 30
кг, при электрической мощности около 10
вт на 1
л кислорода. Биологическая регенерация кислорода может быть осуществлена фотосинтезирующими одноклеточными водорослями, из которых наиболее изучена
Хлорелла.
В лабораторных экспериментах длительностью до 60
сут показана возможность обеспечения газообмена человека при объёме культуры водорослей порядка 20-30
л на человека и затрате минеральных солей около 50
г/чел-сут. Такая система одновременно обеспечивает и поглощение выделяемого человеком углекислого газа. В более сложных вариантах фотосинтетической регенеративной системы расход минеральных солей может быть в несколько раз уменьшен в связи с использованием минеральных элементов мочи. В этом случае одновременно обеспечивается наиболее энергоёмкий этап регенерации воды из мочи - испарение. Кроме того, часть биомассы водорослей может быть использована в пищевом рационе человека (до 20\% белковой части рациона). Применение хемосинтетических газообменников на основе водородокисляющих бактерий целесообразно при наличии электролизной системы, когда получаемый в ней водород не утилизируется для гидрирования углекислого газа, окиси углерода или метана в приведённых физико-химических процессах. Помимо компенсации убыли кислорода, для поддержания состава атмосферы корабля необходимо также удалять избыток углекислого газа и водяных паров. Двуокись углерода может быть удалена физическими методами (вымораживание, конденсация) и применением щелочных химических поглотителей. Более экономично использовать регенерируемые сорбенты (цеолиты, карбонаты). Попеременная работа двух патронов с цеолитом в режиме "сорбция-десорбция" обеспечивает поглощение углекислого газа, выделяемого 2 членами экипажа при массе установки около 40
кг.
Табл. 2. - Основные технологические принципы систем регенерации кислорода,
------------------------------------------------------------------------------------------------------------------------------------------
| | Нерегенеративные системы |
|-----------------------------------------------------------------------------------------------------------------------------------------|
| | физические | физико-химические | химические |
|-----------------------------------------------------------------------------------------------------------------------------------------|
| Формы | Молекуляр- | Химически связанный | Химически связанный в |
| запасае- | ный кислород: | в форме воды | составе: перекисей, |
| мого | газообразный, | | надперекисей и озонидов |
| кислорода | жидкий | | щелочных металлов, |
| | | | перхлоратов, перекиси |
| | | | водорода |
|-----------------------------------------------------------------------------------------------------------------------------------------|
| Способы | Ступенчатая | Электролиз воды | Химическое разложение |
| мобили- | редукция газа | (свободной или | кислородных соединений |
| зации запаса | высокого | связанной | металлов при поглощении ими |
| | давления: | фосфорным | воды и углекислоты , |
| | испарения | ангидридом) | каталитическое разложение |
| | сжиженного газа | | перекиси водорода |
| | и редукция | | |
|-----------------------------------------------------------------------------------------------------------------------------------------|
| Источники | Внутренняя | Внешние источники | Энергия экзотермических |
| энергии | энергия сжатого | энергии | реакций |
| | или сжиженного | | |
| | газа | | |
|-----------------------------------------------------------------------------------------------------------------------------------------|
| | Регенеративные системы |
|-----------------------------------------------------------------------------------------------------------------------------------------|
| | Физико-химические | Биологические |
|-----------------------------------------------------------------------------------------------------------------------------------------|
| Источники | Углекислый газ и вода, выделяемые | Углекислый газ и вода, |
| кислорода | человеком как продукты окисления | выделяемые человеком как |
| | пищевых веществ | продукты окисления пищевых |
| | | веществ |
|-----------------------------------------------------------------------------------------------------------------------------------------|
| Методы | Электролиз воды: прямое | Фотосинтез зеленых растений, |
| регенера- | восстановление углекислого газа | хемосинтез автотрофных |
| ции | водородом до углерода и воды с | бактерий (напр., |
| | последующим электролизом воды, | водородоокисляющих) |
| | восстановление углекислого газа | |
| | водородом до метана (или окиси | |
| | углерода) и воды с последующим | |
| | электролизом воды | |
|-----------------------------------------------------------------------------------------------------------------------------------------|
| Форма | Тепловая, электрическая | Для фотосинтеза - световая, |
| потребляе- | | для хемосинтеза - |
| мой энергии | | электрическая (для получения |
| | | водорода) |
------------------------------------------------------------------------------------------------------------------------------------------
Избыток водяных паров из воздуха может удаляться с помощью нерегенерируемых химических поглотителей, регенерируемых сорбентов (цеолиты), а также физическими методами - вымораживанием и конденсацией. В существующих космических кораблях часть водяных паров конденсируется на холодных поверхностях жидкостно-воздушных теплообменников, входящих в систему терморегулирования обитаемых кабин.
Частные СЖО - регенерации кислорода, удаления углекислого газа и воды - составляют единый комплекс обеспечения состава атмосферы корабля. Иногда к этой системе относят также систему терморегулирования и фильтры очистки воздуха от вредных примесей. Функции этих систем могут выполняться отдельными независимыми устройствами. Так, в частности, была решена СЖО атмосферы в американских кораблях "Меркурий", "Джемини" и "Аполлон", основанная на запасах кислорода, нерегенерируемых поглотителей углекислого газа и водяных паров. Химические системы обеспечивают сопряженность рассматриваемых процессов в пределах одной системы. Именно такое решение было использовано в сов. кораблях "Восток", "Восход" и "Союз", где применялась нерегенеративная система на основе надперекиси щелочного металла. Выделение кислорода регенеративным веществом связано с вполне определёнными количествами поглощаемой воды и углекислого газа (рис.).
Система водообеспечения основывается на запасах воды. В космическом корабле "Аполлон" питьевая вода вырабатывалась также из запасов кислорода и водорода, "сжигавшегося" в электрохимических генераторах (топливных элементах) для получения электроэнергии. Разработаны различные физико-химические методы регенерации воды из конденсата мочи и атмосферной влаги. Конденсат атмосферных паров достаточно эффективно очищается от неизбежных органических примесей каталитическим окислением, а также с помощью ионообменных смол и углей. В наиболее разработанных методах регенерации воды из мочи используются режимы испарения при различных давлении и температуре, с последующим каталитическим окислением загрязняющих примесей в паровой фазе и очисткой получаемого конденсата сорбентами. Данные методы позволяют регенерировать большую часть потребляемой воды, а при дальнейшем их совершенствовании - добиться практически замкнутого цикла её регенерации.
В отличие от предыдущих систем, обеспечение пищей не имеет ближайших перспектив перехода к регенеративным системам. Запасы пищи в космическом корабле состоят из продуктов и готовых блюд, консервированных в их естественном состоянии или в обезвоженном виде (см.
Лиофилизация)
. Регенерация пищевых веществ возможна на основе использования фотосинтезирующих зелёных растений. Поскольку при этом также решается задача поглощения углекислого газа и регенерации воды, то возможно создание СЖО по типу закрытой экологической системы (См.
Экологическая система)
, основанной на замкнутом биологическом круговороте ограниченного количества вещества. Нужные для человека вещества непрерывно воссоздаются в такой системе благодаря жизнедеятельности растений, животных и микроорганизмов. Для этого следует расположить комплекс необходимых организмов (см.
Биокомплекс) в такую функциональную замкнутую цепь, включающую и человека, где "выходные" характеристики предыдущего звена соответствуют параметрам "входа" последующего. В результате такой организации материально-энергетических отношений между элементами системы возникает новое качество - целостная система высшего порядка, обладающая свойствами закрытой термодинамической системы. Такая система в принципе способна к автономному существованию без поступления вещества извне, насколько это позволит степень согласованности входных и выходных характеристик смежных звеньев системы. При этом впервые возникает ситуация, когда существование самой системы становится в зависимость от жизнедеятельности человека как одного из её функциональных элементов. Эта зависимость настолько велика, что привычное представление о СЖО, как о чём-то внешнем по отношению к человеку, теряет своё основание, поскольку человек здесь является объектом обеспечения в той же мере, в какой он сам необходим в качестве составной части системы как целого. Это показывает всю условность термина СЖО по отношению к закрытым экологическим системам, включающим человека.
Лит.: Проблемы космической биологии, т. 5-7, Л. - М., 1967; Космическая биология и медицина, М., 1966.
О. Г. Газенко.
Принципиальная схема системы регенерации и кондиционирования воздуха корабля - спутника "Восток": 1 - вентилятор; 2, 3, 4 - регенераторы с регулирующим устройством; 5, 6 - осушители; 7, 8 - краны с ручным управлением; 9 - автоматический кран; 10 - жидкостно-воздушный теплообменник; 11 - шторка радиатора; 12 - исполнительный механизм (привод шторки); 13 - усилитель; 14 - задатчик температуры; 15 - датчик температуры; 16 - сигнализатор и измеритель влажности; 17 - измеритель давления; 18 - измеритель температуры; 19 - приборная доска; 20, 21, 22, 23 - датчики давления, температуры, влажности; 24, 25, 26 - газоанализаторы O2 и CO2; 27 - фильтры вредных примесей; 28 - противопылевой фильтр; 29 - блок терморегулирования.